“소재 단계 기술력이 완제품서 차별적인 경쟁력”
투명 태양전지 등 6개 나노 소재 기술 소개·체험
"직장인 A씨는 출근하려고 차를 봤더니 범퍼 쪽에 약간의 긁힘을 발견했다. 차에 적용된 셀프 힐링 기술 덕택에 곧바로 원래 상태로 돌아올 것을 알기에 크게 걱정하지 않는다. A씨는 전기차를 언제 충전했는지도 잊었다. 높은 효율의 태양전지가 차량 곳곳에 적용돼 있어 자체 생산한 전기로 출퇴근길 주행을 가능하게 만들어주기 때문이다. 지하주차장에 자리가 없어 야외 주차장에 차를 댔다. 한여름이라 차 안이 엄청 더울 것 같았지만 글라스에 부착된 특수한 필름이 차 안을 한결 쾌적하게 만들어 준다."
이 같은 기술은 모두 나노 소재를 기반으로 현대차·기아가 개발 중인 기술들이다.
현대차·기아는 20일 서울 중구 명동에 위치한 커뮤니티하우스 마실에서 '나노 테크데이 2023'을 개최했다고 밝혔다. 이날 행사에서는 미래 모빌리티 실현의 근간이 될 나노 신기술을 대거 공개됐다.
1나노미터는 10억분의 1미터로, 머리카락 굵기의 10만분의 1에 해당된다. 이렇게 작은 크기 단위에서 물질을 합성하고 배열을 제어해 새로운 특성을 가진 소재를 만드는 것을 나노 기술이라 부른다.
이번 행사는 초기 조건의 사소한 변화가 전체에 막대한 영향을 미칠 수 있다는 '나비 효과'에서 착안해 '나노 효과'라는 주제로 개최됐다.
현대차·기아는 빠르게 변화하는 모빌리티 산업에서 소재 단계에서의 기술력이 완제품에서 차별적인 경쟁력을 만들 수 있다는 중요성을 강조한 것리고 설명했다. 현대차·기아는 소재야말로 세상 모든 모빌리티의 출발점이라 판단하고 신소재 연구개발에 몰두하고 있다. 전동화, SDV, 자율주행 등 미래 모빌리티 혁신 역시 소재라는 원천 기술이 뒷받침돼야 완벽한 구현이 가능해진다는 것이다.
현대차·기아는 이날 각기 다른 목적과 활용도를 가진 총 6개의 나노 소재 기술을 소개하고 별도의 전시 공간을 마련해 직접 체험해 볼 수 있도록 했다.
6개의 나노 소재 기술은 ▲손상 부위를 스스로, 반영구적으로 치유하는 '셀프 힐링자가치유 고분자 코팅' ▲나노 캡슐로 부품 마모를 획기적으로 줄이는 '오일 캡슐 고분자 코팅' ▲자동차와 건물 등 투명 성능 요구되는 모든 창에 적용 가능한 '투명 태양전지' ▲세계 최고 수준의 효율을 낼 수 있는 모빌리티 일체형 '탠덤 태양전지' ▲센서 없이 압력만으로 사용자의 생체신호를 파악하는 '압력 감응형 소재' ▲차량 내부의 온도 상승을 저감하는 '투명 복사 냉각 필름' 등이다.
손상 부위를 스스로, 반영구적으로 치유하는 '셀프 힐링 고분자 코팅'
미래 모빌리티 중심이 되는 자율주행과 전동화는 핵심 부품에 발생한 미세한 상처나 마모는 치명적 오류를 불러올 수 있다. 현대차·기아는 나노 소재를 활용해 이런 문제를 해결할 두 가지 고분자 코팅 기술을 선보였다. 마치 살아있는 유기체처럼 상처를 스스로 치유하고, 마찰이 발생하는 부위에 캡슐이 터지면서 윤활막을 형성하는 기술이다.
기존에도 셀프 힐링 기술이 상용화된 적은 있다. 하지만 코팅 내부의 캡슐이나 혈관형 방식으로 회복을 위한 촉진제를 내재해 한번 사용되고 나면 반복적으로 치유가 어려웠다. 또 일부 완성차 업체가 시도했던 기술은 별도의 가열 장치 없이는 작동하지 않아 전면부 그릴 등 한정된 부위에만 적용됐다.
자동차의 상태를 언제나 처음처럼 유지해 주는 나노 기술은 고객의 편의, 안전뿐 아니라 감성적 측면까지 만족시켜 준다는 점에서 빠르게 시장 진입이 가능할 것으로 전망된다.
가장 우선적으로 자율주행의 핵심 부품인 카메라 렌즈와 라이다 센서 표면 등에 적용을 검토하고 있다. 고객 안전을 위해 가장 효과가 클 것이라는 판단 때문이다. 향후에는 차량의 도장면이나 외장 그릴 등으로 적용 범위를 확대해 나갈 계획이다.
이와 더불어 혹독한 외부 환경에서도 셀프 힐링 성능을 유지하고 발수와 절연과 같은 기능을 더하기 위한 연구도 지속할 방침이다.
부품 마모를 줄이는 '오일 캡슐 고분자 코팅'
오일 캡슐 고분자 코팅은 셀프 힐링의 또 다른 방식인 나노 캡슐을 연구하는 과정에서 가능성을 확장해 개발된 스핀 오프(파생적으로 발생한) 기술이다.
이 기술은 부품에 저 마찰과 내마모성을 부여해 제품의 부가가치를 향상시킨다. 나노 캡슐이 포함된 고분자 코팅을 부품 표면에 도포하면 마찰 발생 시 코팅층의 오일 캡슐이 터지고 그 안에 들어있던 윤활유가 흘러나와 윤활막을 형성하는 원리다.
현대차·기아가 개발한 오일 캡슐 기술은 액체와 고체 윤활제의 장점을 모두 갖춘 것이 특징이다. 나노 캡슐 내에 액체 윤활 성분을 포함하고 있어 낮은 비용으로도 높은 윤활 효과를 거둘 수 있으며, 고체 윤활제와 같이 넓은 범위에서도 적용이 가능하다.
이 기술은 발열과 마찰이 큰 차량의 핵심 동력 전달 부품에 적용돼 내구성과 효율을 개선할 것으로 기대된다. 특히 전기차 모터와 감속기어의 회전량 손실을 줄여 전비 개선을 도모하고 부품 수명도 크게 향상시킬 수 있다.
현대차·기아는 엔진의 구동력을 바퀴에 전달하는 드라이브 샤프트)에 이 기술을 적용해 양산을 목표로 제품을 개발 중이다. 향후에는 향기를 포함한 나노 캡슐을 실내 내장재 마감에 적용해 손길이 스칠 때마다 다채로운 향을 느낄 수 있게 하는 방안도 검토하고 있다.
전기차의 에너지 효율 극대화하는 나노 소재 기반 차세대 태양전지 기술
전기차 시장에선 주행 가능 거리 확대와 충전 시간을 줄이는 것이 핵심 경쟁력으로 꼽힌다. 현대차·기아는 태양전지 기반의 고효율 에너지 생성 기술을 연구하고 있다. 이날 공개한 나노 소재 기반의 태양전지는 전동화 차량은 물론 건물 등에도 다양하게 활용될 수 있어 미래 성장 잠재력이 매우 큰 기술로 꼽힌다.
투명 성능 요구되는 모든 창에 적용 가능한 ‘투명 태양전지’
지금까지 대부분의 태양전지는 실리콘 소재를 기반으로 제조되고 있어 건물의 창문이나 차량의 글라스처럼 투명한 성능이 요구되는 곳에는 적용이 어려웠다.
현대차·기아가 이날 공개한 '투명 태양전지'는 우수한 전기적, 광학적 특성을 지닌 페로브스카이트 소재를 이용한 태양전지 기술이다. 페로브스카이트는 빛을 전기로 바꾸는 광전효율이 높아 태양전지로 제작했을 때 발전효율이 실리콘 태양전지 대비 30% 이상 높은 것으로 알려져 있다.
현대차·기아는 페로브스카이트의 광흡수층 두께 조절을 통해 태양광 발전과 물리적인 투명 상태 구현에 성공했다. 특히 기존 셀 단위(1㎠) 소면적 연구에서 벗어나 대면적(200㎠ 이상) 투명 태양전지를 개발했다는 점에서 의미가 있다. 모듈 단위로 커진 상황에서도 1.5와트(W)급 성능을 보이는 투명 태양전지를 개발한 것은 세계 최초다.
기존 불투명 실리콘 태양전지는 전동화 차량의 지붕 위에만 한정적으로 적용돼 왔지만, 투명 태양전지는 차량의 모든 글라스에 적용돼 더 많은 발전량으로 전기차 효율을 극대화할 것으로 기대된다.
또 건물의 창문도 대체함으로써 에너지 소비를 절감하는 건축 설계가 가능할 것으로 보인다. 이를 위해 현대차·기아는 현대건설 등과 함께 다양한 연구를 진행하고 있다.
세계 최고 수준의 효율 내는 모빌리티 일체형 '탠덤 태양전지'
태양전지는 지속 가능한 에너지를 얻을 수 있다는 장점에도 불구하고 낮은 효율을 극복해야 한다는 과제를 안고 있다. 이런 과제를 해결하기 위해 현대차·기아는 실리콘 태양전지 위에 차세대 태양광 소재인 페로브스카이트를 접합해 만든 '탠덤 태양전지'에 주목하고 있다. 두 개의 태양전지를 적층해 서로 다른 영역대의 태양광을 상호 보완적으로 흡수해 35% 이상의 에너지 효율 달성이 가능한 기술이다.
현대차·기아는 지난해 UNIST(울산과학기술원)와 공동연구실을 출범하고 고효율의 탠덤 태양전지를 개발 중이다. 자체 시험 평가에서 세계 최고 수준인 30% 이상에 달하는 에너지 효율을 기록했다.
현대차·기아는 친환경차의 후드, 루프, 도어 등 태양광을 직접적으로 많이 받는 부위에 탠덤 태양전지를 적용하는 것만으로도 일상 주행이 가능한 전력을 생산할 수 있을 것으로 예상하고 있다. 현재 일 평균 태양광 발전만으로 20km 이상의 추가 주행거리를 확보하는 것을 목표로 하고 있다.
센서 없이 압력만으로 사용자의 생체신호 파악하는 '압력 감응형 소재'
현대차·기아가 이날 공개한 ‘압력 감응형 소재’는 별도의 센서 없이 소재에 가해지는 압력을 전기 신호 형태로 변환하는 기술로, 차량의 발열시트 폼( 내부에 적용돼 탑승자의 체형 부위만 정확하게 발열시켜 준다. 필요하지 않은 부위의 발열을 억제함으로써 소비전력 절감을 돕고, 전동화 차량의 경우에는 추가 주행거리 확보가 가능해진다.
소재 개발에는 탄소나노튜브(CNT)가 활용됐다. 시트에 일정 수준 이상의 압력이 가해지면 탄소나노튜브의 접촉이 증가해 저항이 줄어들고 전류량이 늘어나 해당 부위에 발열이 발생하는 원리를 활용했다.
현대차·기아는 이 소재를 특수 용액에 균일하게 분산시켜 스펀지와 같은 시트 폼에 코팅하는 공정 기술을 독자 개발했다. 시트 폼의 유연한 물리적 성질을 유지할 수 있도록 용액을 최대한 얇게 코팅했으며 반복되는 마찰에도 성능을 유지할 수 있도록 내구성도 확보했다.
압력 감응형 소재는 발열시트 외에도 다양한 미래 기술과 연계돼 고객에게 새로운 가치와 편의를 제공할 전망이다. 자율주행 시대에는 다른 센서를 대신해 탑승자의 정확한 자세 감지가 가능하고, 호흡, 심박수와 같은 생체 신호를 감지해 건강 상태를 진단하는 서비스도 가능할 것으로 예상된다.
차량 내부의 온도 상승을 저감하는 '투명 복사 냉각 필름'
물체가 복사열을 흡수하는 양보다 방출하는 양이 많아 온도가 내려가는 현상을 복사냉각이라고 한다. 현대차·기아가 개발한 '투명 복사 냉각 필름'은 차량의 유리에 부착돼 더운 날씨에도 별도의 에너지 소비 없이 차량 내부의 온도 상승을 낮추는 친환경 기술이다.
특히 차량의 글라스에 적용할 수 있을 정도로 양산성을 고려해 대면적화까지 성공한 사례는 현대차·기아가 세계 최초다. 다층 필름 구조로 이뤄진 이 소재는 외부로부터 들어오는 자외선, 가시광선, 근적외선과 같은 열을 차단하고 효과적인 복사 냉각을 위해 원적외선대의 열을 방사한다.
현대차·기아가 실제 차량에 적용해 자체 시험한 결과에 따르면, 복사냉각 필름을 부착한 차량은 기존 틴팅 필름 적용 차량보다 최대 7℃가량 실내 온도가 낮아지는 효과를 볼 수 있었다. 여름철 차량 탑승 직후 에어컨 사용량을 크게 줄일 수 있게 됨으로써 차량 운행주기 탄소배출량은 약 0.3~0.8% 저감될 것으로 예상된다.
이종수 현대차·기아 선행기술원장 부사장은 "기술 혁신의 근간에는 기초이자 산업융합의 핵심 고리인 소재 혁신이 먼저 있었다"며 "앞으로도 산업 변화에 따른 우수한 첨단 소재 기술을 선행적으로 개발해 미래 모빌리티에 적극 적용해 나갈 것"이라고 말했다.